
1

Supporting Information

MORT is a foundational library which is used for CADD and computational biology.

It is written in C++, and employs the relational model to represent one molecule. A lot

of functions have been developed in this library, and the most used functions are

introduced below in details.

CODE ORGANIZATION

The source code of mort is divided into 10 parts, and they are arranged in different

subdirectories.

AMBFMT: Functions used to interpret the Amber‟s file format.

ATMASK: Functions to get the selected partition of a molecule.

CAPBOX: Functions used to add water/ions to a molecule.

COMMON: All the basic operations are included here, such as constant

definition, string algorithms and linear algebra algorithm.

ENEFRC: Functions used to calculate the energy.

FORMAT: Functions used to parse all kinds of molecule formats.

OBJECT: It contains the basic types of MORT.

OBJFUN: Functions used to operate the objects.

PDBENT: Functions used to interpret the PDB/ENT format.

SMARTS: Functions used to interpret the SMILES/SMART language.

TRIPOS: Functions used to interpret the Tripos mol2 format.

PLUGINS: Some useful commands defined in MORT.

NAMING RULES

Class with “_t” represents that it an object, such as molecule_t, atom_t, bond_t, etc.

Class with “m_” represents that it stores the information of a molecule, such as

m_adjacencys and m_components.

Class with “_ptr” represents that it is the pointer of an object, such as molecule_ptr (it

is defined: typedef shared_ptr<molecule_t> molecule_ptr) and database_ptr.

2

Class with “_command” represents that it is the commands defined based on the

functions, such as loadpdb_command and addions_command.

CLASS DESCRIPTION

The most important classes of MORT are classes molecule_t and morf_t. molecule_t

is used for storing a molecule and its connections, and it contains two member

variables: m_components and m_adjacencys. m_components is used to store the

objects, and m_adjacencys is used to store the relations between objects. morf_t is

used to delete, modify and create the objects, and it is the father class of atom_t,

bond_t, angl_t, dihe_t, impr_t and resd_t. Each of these classes represents one object,

and almost all the operations are focused on these classes. Figure 1 shows one

example to explain how a molecule is stored in MORT. CH4 is composed of 5 atoms

and 4 bonds. Atoms are stored in the object ATOM, bonds are represented by the

object BOND, and they are both included in m_components. The relations between

atom and atom, atom and bond, bond and atom, and some others are stored in

m_adjacencys.

Two methods can be used to iterate on objects by using MOITER (molecular object

iterator, represent by class iter_T) or MORANGE (molecular object range, represented

by class range_T).

MOITER works just like a pointer to class morf_t. The following member functions

of class molecule_t return the starting and ending iterators of a certain type of MO:

iter_t xxxx_begin ();

iter_t xxxx_end();

Here, xxxx could be any of the eight 4 character ID of a molecular object type.

Class morange_t has the following member functions implemented:

morf_t operator[](int id) const;

morf_t at(int id) const;

MORANGE in a sense works just like an array of MOs. Class molecule_t has the

functions “xxxxs()” that return the MORANGE of a certain type of MOs.

For getting and setting the information of objects, some functions are defined to

3

accomplish these operations:

void set_x(const string& pname, const value_type& v);

value_type get_x(const string& pname) const;

bool get_x(const string& pname, value_type& v);

The character „x‟ in the names of these functions can be any of the following five

characters: „i‟ (for integer), „d‟ (for double precision), „s‟ (for string), „v‟ (for numeric

vector) and „a‟ (for any other data type), while the value_type can be int, double,

string, numvec, boost::any depending on the „x‟. In these functions a property is

retrieved by its name (of type string), which can be sometimes slow since it involves

string comparison. So another type of these function are defined to accelerate the

process by using hash ID (the detailed information can be found in the next part).

void set_x(const long long& pid, const value_type& v);

value_type get_x(const long long& pid) const;

bool get_x(const long long& pid, value_type& v);

 For the better use of molecules, class database_t is created to store the information

of a molecule. It contains a vector of pair<string, entity_ptr>. Following are the

member functions of database_t:

bool has(const string& name) const;

entity_ptr get(const string& name) const;

molecule_ptr get_mol(const string& name) const;

database_ptr get_mdb(const string& name) const;

atmvec_ptr get_avec(const string& name) const;

bndvec_ptr get_bvec(const string& name) const;

namemap_ptr get_nmap(const string& name) const;

void set(const string& name, const entity_ptr& pmol);

void add(const string& name, const entity_ptr& pmol);

bool remove(const string& name);

iterator begin();

iterator end();

int size() const;

4

 entity_ptr is the shared pointer of root_t (the root class of molecule_t and

database_t). The function get() can get the pointer of the entity with the name “name”,

and the function set() can add one entity into database. The function add() works like

set(), except that it does not check whether the entity with given name exists in the set

or not.

 A static database is defined in MORT, which is used to store the information of the

molecule parsed from a PDB/ENT, MOL2, SDF/MOL, OFF or force field file.

Figure 1: How CH4 is stored in MORT

HASH DEFINITION

A lot of hash codes have been defined in common/hashcode.hpp to replace the string

type in order to make this library faster, and some representative examples are shown

below. Each hash is 10 letters long and only composed of letters, digital characters

and underlines. More definitions can be seen in the source code, and “long long” is

defined as hashid_t.

Some examples of the hash values are listed in Table 1, and they are generated by

using their lowercase names:

Table 1: Some examples of the hash values

HASH IDs HASH VALUES

AAPOS 47000000LLU

5

ADDITION 2188132356920LLU

ALLIPHAITIC 23194501875730040LLU

ALONE 11094840LLU

AND 5320LLU

ANGL 714120LLU

AROM 791080LLU

AROMATIC 362394391080LLU

ATOM 791160LLU

BOND 213361LLU

CHAIN 33792282LLU

……

FUNCTION DESCRIPTION

Functions are described in the order of the subdirectories in which they are located.

Each subdirectory plays an important role in this library.

 AMBFMT: Amber is a very famous molecular simulation package developed by

a lot of brilliant researchers. The Amber force fields have been widely used by

other molecule simulation software packages for molecular simulation. In this

part of MORT, some functions are designed in order to make it more convenient

for developers who may what to parse the Amber force fields and the Amoeba

force field. Some important functions are described here:

 Read_frc

Read force field paramters from an amber's paramter file, the paramters are stored in one

molecule.

Function: void read_frc(std::istream& is, molecule_t& fp);

Arguments:

 is: input stream.

 fp: force field parameters.

 Read_off

6

Read object‟s parameters from off file, off file contain water information which will be

needed when adding solvation to the molecule. Different water models are in different off

files, details can be seen in CAPBOX part.

Function: bool read_off(std::istream& is, molecule_t& m);

Arguments:

is:input stream.

m:parameter, which is stored in a molecule.

 Read_amoeba_frc

Read amoeba force field parameter. Amoeba Force Field is a useful Force Field, and is

included in TINKER, which is a famous molecular modeling package.

Function: void read_amoeba_frc(std::istream& is, molecule_t& afp, molecule_t& bfp);

Arguments:

is: input stream.

afp:atomic part of force field parameters.

bfp:dipole part of force field parameters.

 Write_amber_prmtop

Save the parameters of molecule into topology file. This is a very useful function, topology

file contains a lot descriptions of molecule, such as atom, bond, angle and so on. All these can

be used by other programs for further analysis.

Fucntion: void write_amber_prmtop(ostream& os, molecule_t& m, const molecule_t&

ffp);

Arguments:

os: output stream.

m: molecular object.

ffp: force field parameter.

 ATMASK: sometimes, users may want to get the copy of the part of the

molecule, to this end, functions here can be uesd to accomplish this intention.

7

 mask_atom

get the specified part of one moelcule, and return the atoms or residues as a new moelcule in

MORT.

Function: atomvec_t mask_atom(const molecule_t& mol, const string& mask);

 Arguments:

mol: molecular object.

mask: the expression to specify the partition of the moelcule. It can start with “:” or “@”,

which means to select by residues or atoms. If it starts with “:”, then the following will have

two selections: “:{numlist}” (such as “:1-17”) and “:{namelist}” (“:GLY,ARG”). If “@”, the

type can be three: “@{numlist}” (@1-17), “{namelist}” (“@CA, O, H”) and “@%{typelist}”

(@%N3,CT). There also exist some operators: ("<:", ">:", "<@", ">@"), "!", "&" and "|"

(listed in the order of descending priority). Users can use operators to make the expression

more sepcific. For example, “:4 <@7” means to get all the atoms within 7 Å of residue 4;

“:ARG, GLY & @CA,O” means to return the CA and O atom of residue “ARG” and “GLY”.

 CAPBOX: Four solvation functions were designed to add solvent environment.

Apart from adding solvent box, the functions that can add ions to solute are

defined in this part as well. Brief introduction of these functions can be found

below:

 Solvatecap, Solvatebox, Solvateoct, Solvateshl

Solvatecap is used to add a solvate cap around the solute‟s specified position, solvatebox can

add solvate box to one molecule in a cuboid way, solvateoct is used to add solvate box to one

molecule in a truncated octahedron way, and solvateshl can add a solvate cap around the

solute. If these functions are used, “#include <capbox/solvate.hpp>” should be in the head of

the source code.

Function: void solvatecap(molecule_t& mol, const molecule_t& svt, const numvec& capcnt,

double caprad, double closeness);

Function: void solvatebox(molecule_t& mol, const molecule_t& svt, double buffer, double

 closeness, bool iso);

Function: void solvateoct(molecule_t& mol, const molecule_t& svt, double buffer, double

8

closeness);

Function: void solvateshl(molecule_t& mol, const molecule_t& svt, double shlext, double

closeness);

Arguments:

mol: molecule mol (solute).

svt: molecule svt (solvent).

 capcnt: center of cap.

 caprad: radius of cap.

 buffer: the buffer between solute and solvate.

 closeness: the closeness between solute and solvate.

 iso: a boolean to judge if the box is a cube.

shlext: extent of the shell.

 Addions

Add ions to one molecule, there exists another version of this function which can add two

kinds of ions to one molecule with two more arguments: “const molecule_t& ion2” and “int

numion2”, ion1 and ion2 should carry the opposite charge.

Function: void addions(molecule_t& m, const molecule_t& ion, int n ion, double shlext,

double res);

 Arguments:

 m: molecular object.

 ion: ions.

 nion: number of ions.

 shlext: the thickness of the shell.

 res: resolution of the whole system.

 COMMON: All the basic operations are included in this d irectory, such as the

constant definition, string algorithms and linear algebra algorithm. These

functions will be used frequently, and are very necessary for many others

functions. Constant definition has been introduced in the HASH DEFINITION

9

part. The functions used to do linear transformation to a structure are included in

this part, such as rotate, transform and so on. The functions used to deal with the

features of plane and stereo can also be found here.

 Transform

Transform the molecule according to the vector. The second arguments should have 16

elements, it can be regarded as a 4*4 matrix. The top-left 3*3 is a transform matrix, and the

last element can be regard as the scale.

 Function: void transform (vector<double>& crd, const double* mat);

 Arguments:

 crd: coordinate of the molecule.

 mat: the pointer of transformation matrix.

 Rotate

Rotate the molecule around rotation axis. The rotation method is called “Rodrigues rotating

function”. Target vector rotates around the axis, sita is the rotation angle and the direction is

clockwise.

 Function: numvec& rotate(numvec& vec, const numvec& axs, double ang);

 Arguments:

 vec: coordinate of the molecule.

 axs: rotation axis.

 ang: rotation angle.

 Translate

Translate the vector according to the translation vector.

 Function: void translate (vector<double>& crd, const numvec& sft);

 Arguments:

 crd: coordinate of the molecule.

 sft: translation vector.

 Dist, Angl, Tors

10

Dist can calculate the bond length between two atoms, Angl will return the angle composed

by three atoms and Tors is used to calculate the torsion angle composed by 4 atoms.

Function: double dist(const numvec& v1, const numvec& v2);

Function: double angl(const numvec& v1, const numvec& v2, const numvec& v3);

Function: double tors(const numvec& v1, const numvec& v2, const numvec& v3, const

numvec& v4);

Arguments:

 v1, v2, v3 and v4: coordinates of atoms.

 Zmatrix

This function is used to define the Cartesian coordinates of ATOMs within object using

internal coordinates. It is composed by 3 separate functions (see below), the first function is

used to transform second atom‟s internal coordinate into cartesian coordinate, the second

function is for the third atom, and the last function is used for the following atoms.

Function: numvec zmatrix(const numvec& p1, double dist);

Function: numvec zmatrix(const numvec& p1, double dist, const numvec& p2, double angl);

Function: numvec zmatrix(const numvec& p1, double dist, const numvec& p2, double angl,

const numvec& p3, double tors);

Argument:

 p1, p2, p3: cartesian coordinates of the atoms

 dist: distance between two atoms

 angl: angles generated by three atoms

 tors: torsions composed by four atoms

 Plane

Return the plane composed by 3 points, the result is a 4-element vector (n1, n2, n3, d), and

the plane is determined by the following equation: n1*x+n2*y+n3*z+d=0.

 Function: numvec plane(const numvec& v1, const numvec& v2, const numvec& v3);

Arguments:

 v1, v2 and v3: coordinates of 3 points.

11

 ENEFRC: Energy can be divided into two parts: bond-related energy and

non-bond energy. Functions used to calculate the energies of bond, angle, torsion

and out-of-plane are included in the previous one. And the electrostatic potential,

van der Waals potential and energy based on the Generalized Born (GB) model

can be calculated by the non-bond energy functions. Formulas‟ definitions are

listed in Table 2.

 Eval_bond, Eval_angl, Eval_tors, Eval_oops

These four functions are used to calculate the bond related energy, their functions are

self-explanatory.

Function: double eval_bond(const molecule_t& mol);

Function: double eval_angl(const molecule_t& mol);

Function: double eval_tors(const molecule_t& mol);

Function: double eval_oops(const molecule_t& mol);

 Nonbond_egb

This function is used to calculate non-bond energy including electrostatic potential, Van Der

Waal potential and energy based on GB model, these energy are included in a numvec.

 Function: numvec nonbond_egb(const molecule_t& m, const ctrlparm_t& p);

 Arguments:

 m: molecule m.

 p: parameters for the calculation of energy. It contains several flags: igb, cut, rgbmax

and offset. They can be separated by using “ ”, “,” and “:”. “rgbmax” is set to be 25.0 and

“offset” is set to be 0.09 by default. “igb” is used to determine if periodic boundary

conditions (igb=0) should be used, and “cut” is the cutoff of non-bond interaction.

 Get_dir

This function is used to calculate non-bond energy in the periodic boundary conditions by

using the Ewald summation.

 Function: numvec get_dir(const molecule_t& m, const ctrlparm_t& p);

12

 Arguments:

 m: molecule m.

 p: parameters for the calculation of energy. Details can be seen in nonbond_egb section.

Table 2: The energy definition in MORT

Bonding Energy Equation

bond potential Kb*(l - l0)
2

angle potential Ka*(θ - θ0)
2

torsion potential Kt*[1 + cos(nt+t0)]

improper torsion potential Ki*[1 + cos(ni+i0)]

Nonbond Energy

electrostatic potential INVCHG2*
d

qq 21 *

Van Der Waal potential])(2)[(** 6211221
21

d

rr

d

rr
ww

potential on GB model (polar solvation)

1

0 1

*
)

1
1(*2

n

i

n

ij GB

ji

f

qq
INVCHG

potential on PBC A little complicated, not shown here

In Table 2, Kb, Ka, Kt and Ki represent their corresponding force constants, and l0, θ0, t0 and i0

are their equilibrium constant. q1 and q2 are the charges of two atoms, r1 and r2 equal to the

van der Waal radius, w1 and w2 are the depth of potential well, and d is the distance between

two atoms. INVCHG2 is a constant of 332.05kcal/mol, and it is calculated by using the

following equation:

)184.4*10/(**2 102 NACKINVCHG e = 332.05 kcal/mol (1)

For the polar solvation energy, is the dielectric constant of water (78.5), and fGB is defined

as follows:

5.02222)))2/(exp(*(ijijijijGB rrf (2)

 jiij *2 (3)

13

Where rij is the distance between two atoms, and αi and αj equal to the Born radii of atoms i

and j.

 FORMAT: The functions in this part are used to parse different kinds of

molecule formats, including the MDL SDF format, the PDB format and the

TRIPOS MOL2 format. There are also some functions that can be used to load or

save the database, and the database represents the set of molecules or parameters.

 Read_sdf

Read the molecule from SDF format input stream.

 Function: void read_sdf(istream& is, molecule_t& mol);

 Arguments:

 is: input stream.

 mol: molecule mol.

 Write_sdf

Save the molecule in stream of SDF format.

 Function: void write_sdf(ostream& os, const molecule_t& mol);

Arguments:

 os: output stream.

 mol: molecule mol.

 Load_mdb

Load database from input stream according to format code.

 Function: void load_mdb(std::istream& is, database_t& db, const hashid_t& format);

 Arguments:

 is: input stream.

 db: database db.

 format: predefined format code, can be SDF, MOL2 and OFF.

 Save_mdb

14

Save database to stream according to format code. This function can be used to save a set of

molecules into one database file.

 Function: void save_mdb(std::ostream& os, database_t& db, const hashid_t& format);

 Arguments:

 os: output stream.

 db: database db.

 format: predefined format code, can be SDF, MOL2 and OFF.

 OBJECT: Object class atom_t, bond_t, angl_t, dihe_t, impr_t and resd_t are

designed here. All these class are extended from morf_t, and they have some

common basic functions defined in this part. Class mole_t can store one

molecule‟s information, and the details can be seen in CLASS DESCRIPTION.

Common functions for object class: create, get and has. Create is used to

create one object, get can return the object that is composed by the given

elements, and has is used to check if there is one object composed by the given

elements.

For example: in angl.hpp

Function: static angl_t create(atom_t& a1, atom_t& a2, atom_t& a3);

Function: static angl_t get(const atom_t& a1, const atom_t& a2, const atom_t& a3);

Function: static bool has(const atom_t& a1, const atom_t& a2, const atom_t& a3);

 OBJFUN: The functions in OBJECT are very basic, and more operations dealing

with objects can be found in this directory. Too many functions have been

developed here, and they operate on different objects. For example, to ATOM,

get_atom_hybrid is used to get one atom‟s hybridization, get_atom_valence

returns the valance of a specified atom, get_atom_pie will return the atom‟s

contribution to the aromatic ring; To BOND, bond_bydis can create the bond

between two atoms when the distance between them is smaller than the given

cut-off, create_tor2 will return the object torsion generated by 4 atoms; and for

the whole molecule, some functions can be seen below:

15

 Fixbond

This is a very useful function, it adopts several rules to set the bond order of molecule m. It

can be used to add bonds‟ information to the molecule file, such as PDB formatted file, which

doesn‟t contain bonds‟ information of proteins.

Function: void fixbond(molecule_t& m);

 Arguments:

 m: molecule m.

 AddHs

Add hydrogen to molecule, the molecule should have correct bond order assigned.

 Function: void (molecule_t& mol);

 Arguments:

 mol: molecule mol.

 Merge

Merge two molecules into one, return the newly created residue.

Function: resd_t merge(molecule_t& m, const molecule_t& s, int rid=-1);

 Arguments:

 m and s: molecule m and s.

 rid: the id of residue in molecule m.

 PDBENT: PDB (Protein Data Bank) is a repository for the 3-D structural data of

large biological molecules, such as proteins and nucleic acids. A PDB file is

composed of several parts, including ATOM, CONNECT, HYDBND and etc.,

and detailed information is available at http://www.wwpdb.org/docs.html. The

functions that can parse the PDB format are listed in this directory.

 Read_pdb

Read the molecule from the PDB file.

Function: bool read_pdb(istream& is, molecule_t& mol);

 Arguments:

http://www.wwpdb.org/docs.html

16

 is: input stream.

 mol: molecule mol.

 Write_pdb

Write the molecule mol into PDB formatted file.

 Function: bool write_pdb(ostream& os, const molecule_t& mol);

 Arguments:

 os: output stream.

 mol: molecule mol.

 SMARTS: SMARTS/SMILES is a language designed for describing molecule

patterns. SMARTS/SMILES is just a string, and the topology information of a

molecule is stored in this string. The functions used to parse this formatted string

are developed.

 Read_smiles

Load the molecule from SIMLES string.

 Function: bool read_smiles(const char* exp, molecule_t& mol);

 Arguments:

 exp: SIMLES expression, a string.

 mol: molecule mol.

 Read_smarts

Load the molecule from SMARTS string.

 Function: bool read_smarts(const char* exp, molecule_t& mol);

 Arguments:

exp: SMARTS expression, a string.

 mol: molecule mol.

 TRIPOS: Except from SDF and PDB, the MOL2 format is also popular. A

MOL2 file is a complete, portable representation of a SYBYL molecule, it

17

contains all the information needed to reconstruct one molecule. It is also

constitutive of several sections, such as @<TRIPOS>ATOM,

@<TRIPOS>BOND, and so on.

 Read_mol2

Read the molecule from mol2 formatted file.

 Function: void (istream& stream, molecule_t& mol);

 Arguments:

 stream: input stream.

 mol: molecule mol.

 Write_mol2

Output the molecule‟s information.

 Function: void write_mol2(ostream& stream, const molecule_t& mol);

 Arguments:

 stream: output stream.

 mol: molecule mol.

 PLUGINS: In order for the better use of mort, we developed lots of commands.

And with all these commands, researchers will do less work if they use mort.

There is one command named source, which is used to interpret the force filed

files displayed in dat/cmd.

MORT has been tested at ubuntu 12.04 and Red Hat Enterprise Linux Server release

5.5 (Tikanga).

Examples

1. The following codes can be used to calculate the energy of a molecule (PDB entry:

2PMV), and only a few lines are needed to accomplish this goal. The code is located

in the test directory.

18

#include <iostream>

#include <plugin.hpp>

#include <object.hpp>

#include <objfun.hpp>

#include <format.hpp>

#include <ambfmt.hpp>

#include <enefrc.hpp>

using namespace std;

using namespace mort;

int main()

{

 string file = "../dat/cmd/leaprc.ff99SB"; //load parameters from force field

 ifstream is(file.c_str());

 source(is);

 loadpdb_command pdb("loadpdb","2PMV","2PMV.pdb","");//load pdb

 pdb.exec();

 molecule_ptr mol= content().get_mol("2PMV"); //get the molecule with its name

 energy_command energy("2PMV","igb,1:cut,12"); //calculate the energy according to

the parameters

 energy.exec();

}

2. Sometimes, the mirror structure of a molecule is needed, and the following code

can be used to reflect one molecule according to the given plane (only PDB format is

considered, and the operations for the other formats are same). A lot of commands

have been created, and their information can be seen in Command‟s Description.

19

#include <iostream>

#include <fstream>

#include <string>

#include <objfun.hpp>

#include <object.hpp>

#include <common.hpp>

#include <plugin.hpp>

using namespace std;

using namespace mort;

void reflect(numvec & plane,numvec & pos);

int main (int argc,char *argv[])

{

 if(argc!=7)

 {

 cerr << "one plane should have 4 elements" << endl;

 return 1;

 }

 ifstream input(argv[1]);

 ofstream output(argv[2]);

 if(!input)

 {

 cerr << "Input file not existS" << endl;

 return 1;

 }

 string file = "dat/cmd/leaprc.ff99SB"; //load the parameters before load the molecule

 ifstream is(file.c_str());

 source(is);

 loadpdb_command load("loadpdb", "2PMV", argv[1], "");

20

 load.exec();

 molecule_ptr mol= content().get_mol("2PMV"); //get the molecule

 numvec plane(4); //generate the plane

 int k = 3;

 for(int i=0;i<4;i++) //set plane's value

 {

 plane[i] = atof(argv[k]);

 k++;

 }

 atomiter_t iter = mol->atom_begin(); //the iterator of atoms

 for(;iter!= mol->atom_end();iter++)

 {

 numvec pos= iter->get_v(POSITION); //get the position of each atom

 reflect(plane, pos); //reflection transformation of each atom

 iter->set_v(POSITION, pos); //set the new position

 }

 savepdb_command save("2PMV",argv[2]);

 save.exec();

}

void reflect(numvec &p,numvec &v) //reflect one vector according to the plane

{

 numvec r(3);

 double pp = p[0]*p[0]+p[1]*p[1]+p[2]*p[2];

 double p0 = p[0]*p[0]-p[1]*p[1]-p[2]*p[2];

 double p1 = p[1]*p[1]-p[0]*p[0]-p[2]*p[2];

 double p2 = p[2]*p[2]-p[0]*p[0]-p[1]*p[1];

 r[0]=-2*p[0]*(v[1]*p[1]+v[2]*p[2]+p[3])-v[0]*p0;

 v[0]=r[0]/pp;

21

 r[1]=-2*p[1]*(v[0]*p[0]+v[2]*p[2]+p[3])-v[1]*p1;

 v[1]=r[1]/pp;

 r[2]=-2*p[2]*(v[0]*p[0]+v[1]*p[1]+p[3])-v[2]*p2;

 v[2]=r[2]/pp;

}

Additional functions:

Setpchg: Calls the standalone program in Antechamber to assign atomic partial

charges.

Parmchk: Add missing force field parameters by invoking Parmchk.

These functions are contained in Amber, and please make sure that you have Amber

(AmberTools at least) installed in your computer, and the environmental variable

AMBERHOME is set correctly if you want to use these functions.

